Monday, October 31, 2011

Math: What is it all About?

            Math intimidates a lot of people.  Public schools are frequently, almost constantly, looking for Math teachers for middle and high schools.  Homeschool moms who have felt confident in teaching most subjects suddenly start looking for coops and tutors when it comes to “higher level” math.  Statistics show that most adults do not feel confident about their math abilities, and most say they never used this math once they left formal schooling.  So, if most adults don’t use math, is it worth the time and energy to teach?

            To answer this question, first we should look at the relevance of math in the real world.  In the book “A Thomas Jefferson Education,” the author suggests reading the classics in all subjects, including math.  What is there to read about math?  Math is simply a list of problems, right?  Wrong.  That is how it is taught, and it is why most adults think math does not affect their daily life.  However, just like history is about people, math is about patterns which people found in nature.  Reading about the “masters” who discovered these patterns helps us to realize exactly how math affects our lives, and we are much more apt to learn if we know something will be needed in the future.

            In that same book, van de Mille suggests certain objectives which should be learned from any math program.  Here are the thirteen “focuses” which he lists:

1.     seek and recognize patterns

2.     explore the relationship between things

3.     see similarities and distinctions

4.     analyze logically, but with a deep sense that there is a right answer and a set ideal worth detecting

5.     compare and contrast

6.     see things in black and white

7.     see infinite shades of grey and therefore avoid jumping to conclusions

8.     seek evidence for conclusions

9.     check opinion with first-hand research

10.  put his own pen to paper before accepting what society tells him

11.  seek for absolutes

12.  remain open to surprising new information which makes past conclusions limited, though perhaps still accurate

            Is he talking about math or science?  Actually, once you start reading some of the classic books by master mathematicians, you discover that there really is not much difference between the two subjects.  Most of what we consider higher level math was designed to help predict natural events or to know what would happen if something else were to happen, and so it would be possible to prevent disasters (like the classic tale of 2 trains colliding at a certain speed) or to predict success (like knowing how much you will have at retirement if you put $2,000 a year for 8 years into a mutual fund that earns 18%, then leave it alone and let the interest roll over into principal for 20 years – compound interest is fascinating!).  Math can help us with most of our problems, if we simply understand why a particular study of math is necessary.

            How can you teach required math by reading biographies, even if they were mathematic geniuses?  Here is an example.  If you want to study geometry, begin reading Euclid (I also think he is great to read when you are studying algebra).  Have your child (and you) make up numbers to check the absolute conclusions that he came up with.  See if they are accurate.  Keep a journal.  Some of his propositions, you will be able to check in a couple of minutes, they are such obvious conclusions.  At the time, though, they needed the absolutes presented to understand the more difficult concepts.  Others, however, you may have to attempt over and over, possibly even skip and come back to, before it makes sense.  However, the act of struggling through, trying to discover the truth behind the theory, will cement that knowledge into your head and you will find yourself (and your child) using what you learn in daily life.

            If you are like me, not quite sure where to start, find the “mathematics” section of the library and pick a book that looks like it is about one of the classic mathematicians.  Don’t pick a current person initially – choose someone who is regarded highly even after centuries of other mathematicians checking their data.  You will discover how the mathematician thought, which is invaluable if you are going to use the math you and your child will learn.  Keep a journal, writing down concepts and people you would like to know more about, and work out any mathematical concepts which are brought up in the text, even if it is a very rudimentary idea.

            Math is valuable in daily life.  Algebra teaches logic.   Geometry teaches methods to recognize patterns in the natural world.  Calculus teaches methods to solve problems connected with objects in motion.  There is a reason that every level of math is considered important – learning about the “master mathematicians” help us learn how we can apply math is our everyday lives.

No comments:

Post a Comment